Nuclear translocation of ferritin in corneal epithelial cells.
نویسندگان
چکیده
Our previous studies have shown that ferritin within developing avian corneal epithelial cells is predominantly a nuclear protein and that one function of the molecule in this location is to protect DNA from UV damage. To elucidate the mechanism for this tissue-specific nuclear translocation, cultured corneal epithelial cells and corneal fibroblasts were transfected with a series of deletion constructs for the heavy chain of ferritin, ferritin-H, tagged with a human c-myc epitope. The subcellular localization of the ferritin was determined by immunofluorescence for the myc-tag. For the corneal epithelial cells, the first 10 or the last 30 amino acids of ferritin-H could be deleted without affecting the nuclear localization. However, larger deletions of these areas, or deletions along the length of the body of the molecule, resulted largely in retention of the truncated proteins within the cytoplasm. Thus, it seems that no specific region functions as an NLS. Immunoblotting analysis of SDS-PAGE-separated extracts suggests that assembly of the supramolecular form of ferritin is not necessary for successful nuclear translocation, because one deletion construct that failed to undergo supramolecular assembly showed nuclear localization. In transfected fibroblasts, the endogenous ferritin remained predominantly in the cytoplasm, as did that synthesized from transfected full-length ferritin constructs and from two deletion constructs encoding truncated chains that could still assemble into the supramolecular form of ferritin. However, those truncated chains that were unable to participate in supramolecular assembly generally showed both nuclear and cytoplasmic localization, indicating that, in this cell type, supramolecular assembly is involved in restricting ferritin to the cytoplasm. These data suggest that for corneal epithelial cells, the nuclear localization of ferritin most likely involves a tissue-specific mechanism that facilitates transport into the nucleus, whereas, in fibroblasts, the cytoplasmic retention involves supramolecular assembly that prevents passive diffusion into the nucleus.
منابع مشابه
Glutathione peroxidase 4 plays an important role in oxidative homeostasis and wound repair in corneal epithelial cells
Oxidative stress is involved in the pathologies of corneal epithelial cells. However, the importance of specific antioxidant enzymes in corneal epithelial cells is not fully understood. The purpose of this study is to elucidate the role of glutathione peroxidase 4 (GPx4) in corneal epithelial cells. For in vitro experiments, an immortalized human corneal epithelial cell line was used. Cytotoxic...
متن کاملCorneal epithelial-specific cell surface antigen recognized by a monoclonal antibody.
Monoclonal antibodies, specific against cell surface differentiation antigens of human corneal epithelial cells, were developed using epithelial cells resected from human corneas as the immunogens. One of these antibodies reacted specifically with corneal epithelial cells and not with epithelial cells of other tissues when tested by an indirect immunoperoxidase technique. Nonidet P-40 extracts ...
متن کاملComparison of Ultra Structure and Gene Expression of Cultured Limbal Stem Cells and Fresh Conjunctival, Limbal and Corneal Tissues
Purpose: The present study intends to show the characteristics of cultured limbal stem cell (CLSCs) and to compare them with normal Conjunctival (C), Limbal (L) and Cornea (K) tissues. Materials and Methods: The expressions of a set of genes potentially involved in differentiation and stemness function of limbal stem cells were assessed in freshly prepared limbal, corneal, and conjunctival tis...
متن کاملIfn- Γ - Induced Md-2 Expression and Lps Responsiveness in Corneal Epithelial Cells Is Mediated by Jak2 Activation and Direct Binding of Stat1 to the Md-2 Promoter
The inability of epithelial cells from the cornea and other tissues to respond to LPS is due to low or absent expression of the TLR4 co-receptor MD-2. Bone marrow chimera studies showed that MD-2 expression on non-myeloid cells was sufficient to mediate LPSinduced corneal inflammation. As IFN-γ induces expression of multiple genes, and IFN-γ is produced during Pseudomonas aeruginosa corneal inf...
متن کاملAltered ferritin subunit composition: change in iron metabolism in lens epithelial cells and downstream effects on glutathione levels and VEGF secretion.
PURPOSE The iron storage protein ferritin is necessary for the safe storage of iron and for protection against the production of iron-catalyzed oxidative damage. Ferritin is composed of 24 subunits of two types: heavy (H) and light (L). The ratio of these subunits is tissue specific, and alteration of this ratio can have profound effects on iron storage and availability. In the present study, s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 114 Pt 12 شماره
صفحات -
تاریخ انتشار 2001